(Cambridge Quantum

DisCoPy —
Monoidal Categories
in Python

by Grovanni de Felice, Alexis Toumzi, Bob Coecke

Cambridge Quantum

Department of Computer Science
University of Oxford, United Kingdom
GIOVANNI DE FELICE
giovanni.defelice@cs.ox.ac.uk
ALEXIS TOUMI
alexis.toumi@cs.ox.ac.uk

BOB COECKE
bob.coecke@cs.ox.ac.uk

Cambridge Quantum
Terrington House
13-15 Hills Road
Cambridge CB21NL
United Kingdom

Published by Cambridge Quantum

06 May 2020

DisCoPy: Monoidal Categories in Python

Giovanni de Felice, Alexis Toumi, Bob Coecke
Department of Computer Science, University of Oxford. Cambridge Quantum Computing Ltd.

{firstname.lastname}@cs.ox.ac.uk

We introduce DisCoPy, an open source toolbox for computing with monoidal categories. The library
provides an intuitive syntax for defining string diagrams and monoidal functors. Its modularity allows
the efficient implementation of computational experiments in the various applications of category
theory where diagrams have become a lingua franca. As an example, we used DisCoPy to perform
natural language processing on quantum hardware for the first time.

Introduction

String diagrams are a graphical calculus for monoidal categories, introduced independently by Hotz [34]]
in computer science and Penrose [56] in physics, then formalised by Joyal and Street [35, [36]. Graphical
languages are surveyed in Selinger [62], they have become a standard tool in applied category theory.
We cite a few of the growing list of applications: computer science [12] [1]], quantum theory and the ZX-
calculus [16} 2 [19], networks and control theory [} 6, (7], concurrency [11], databases and knowledge
representation [55} [10]], Bayesian reasoning and causality [21} 13}, 39]], linguistics and cognition [14} 9],
functional programming [60]], machine learning and game theory [29, 30]. In all these applications,
string diagrams are the syntax and structure-preserving functors are used to compute their semantics in
concrete categories.

There are several existing proof assistants with graphical user interfaces for rewriting string diagrams
in a more or less automated fashion: quantomatic [41] and PyZX [40] for the ZX-calculus, globular
[8] and its successor homotopy.io [59]] for higher categories, cartographer [65]] for symmetric monoidal
categories. However, these are all stand-alone tools which use different task-specific encodings for
diagrams, preventing interoperability between them and with the software ecosystems of application
domains.

DisCoPy (Distributional Compositional Python) is not yet-another rewriting tool, rather it is meant
as a toolbox for compiling diagrams into code, be it for neural networks, tensor computation or quantum
circuits. It provides an intuitive Python syntax for diagrams, allowing to visualise and reason about
computation at a high level of abstraction. Monoidal functors allow to translate these diagrams into
concrete computation, interfacing with optimised task-specific libraries. DisCoPy is an open source
package, it is available with an extensive documentation and demonstration notebooks hosted at:

https://github.com/oxford-quantum-group/discopy

This paper describes the architecture of DisCoPy, focusing on the translation from abstract categorical
definitions into their concrete implementation in Python. We assume some working knowledge of
category theory and refer the reader to [49] and to [3]] for an introduction. Implementing a category in an
object-oriented programming language amounts to defining a pair of classes for its objects and arrows,
together with a pair of methods for identity and composition. When the category is free, composition
is implemented by list concatenation and identity by the empty list. Concrete categories may then be
defined by subclassing this free category and overriding identity and composition. These are expected to
respect the usual associativity and unit axioms, however they cannot be formally checked in Python.

David I. Spivak and Jamie Vicary (Eds.):
Applied Category Theory 2020 (ACT2020)
EPTCS 333, 2021, pp. 183-{197] doi{10.4204/EPTCS.333.13

http://dx.doi.org/10.4204/EPTCS.333.13
https://github.com/oxford-quantum-group/discopy

184 DisCoPy: Monoidal Categories in Python

Starting from free categories (section [I)) as a base class, more structure can be added by subclassing
and adding new methods. Quotient categories can be implemented by a method for computing normal
forms. For instance, monoidal categories (section 2)) subclass categories with an extra method for tensor
product and one for interchanger normal form. For now, we implemented Cartesian and rigid monoidal
categories (section [3)), as these provide a syntax for the concrete categories implemented in DisCoPy:
Python functions (appendix [Al) and numpy [69] tensors (section). The development of DisCoPy was
first motivated by the implementation of natural language processing on quantum hardware. Hence, we
implemented quantum circuits (section[3) as a subclass of rigid monoidal categories with an extra method
for evaluation as numpy tensors and interface with the tlket) compiler [64]).

We hope that this toolbox will prove to be of use to the applied category theory community, and plan
on adding more categorical tools to it in the future.

1 cat.py

We give a brief introduction to the concepts of signatures, free categories and functors, fixing some
notation for the rest of the paper. We then describe how these concepts, once implemented in Python,
give the architecture of @, the first module of the DisCoPy package.

A simple signature ¥ is given by a pair of sets Xy, 2| of generating objects and arrows, and a pair of
functions dom, cod : 2| — X called the domain and the codomain respectively. A morphism of signatures
F : ¥ — ¥’ is apair of functions Fy: £y — Z(’), Fi:Z,— Zi which commute with dom and cod. The free
category C(X) generated by a signature %, is defined as follows: the objects are given by X and an arrow
fis—tisgivenbyalist f = fi...f, € Z} such that dom(f) = s, cod(f,) =1 and cod(f;) = dom(fi+) for
all i < n. Identity arrows are given by the empty list and composition is given by list contatenation. The
universal property of C(X) may be stated as follows: functors F' : C(X£) — D from a free category are
uniquely defined by their image on the signature X, i.e. by a morphism of signatures F : £ — U(D) for U
the forgetful functor. These abstract definitions are implemented in an object-oriented fashion with the
following Python classes, where the tuples denote the arguments to the corresponding class constructors.

class cat.Ob(name) is given by any Python object name . Equality of objects is given by the equality
of names, i.e. x == y|if and only if‘x .name == y.name ‘

class cat.Arrow(dom, cod, boxes) is given by a pair of \O_b[—instances dom, cod and a sequence
of Box -instances boxes. Axioms are checked at initialisation, AxiomError| is raised otherwise. An
Arrow -instance | £ | has the following methods:

e f.dagger() returns the dagger of an arrow, it has syntactic sugar f[::-1].
e f.then(g) | returns the composition of two arrows, it is written £ » ¢ ‘ or ‘ g « f ‘

* Arrow.id(x) ‘returns the identity arrow on a given object, it is shortened to ITd(x) .

Axioms are implemented as part of the testing suite for the DisCoPy package: associativity £ » (g » h) ‘
== (£ » g) » h andunitality £ » Id(f.cod) == £ == Id(f.dom) » £ follow directly from the
monoid structure of Python sequences. Arrow -instances can be manipulated using the standard Python

syntax for sequences: they are iterable, indexable and sliceable, i.e. £[i] == f.boxes[i] ‘and‘ fli:j] ‘

returns the arrow ‘ f[il » ... ‘ » T[5] ‘ Printing an arrow yields a DisCoPy expression which generates
it, which proves useful for debugging and interactive programming.

G. de Felice, A. Toumi & B. Coecke 185

class cat.Box(name, dom, cod, data=None, _dagger=False) isasubclass of Arrow,i.e. abox

£ is defined as an arrow with f.boxes == [f] ‘ data ‘ is an optional argument, it can be used to attach
arbitrary Python data to a box. _dagger is an optional Boolean argument, set to False by default. It
is used to construct an involutive identity-on-objects contravariant endo-functor, i.e. a dagger.

class cat.Functor(ob, ar, ob_factory=0b, ar_factory=Arrow) is given by a pair of mappings

ob, ar| from % to ob_factory and from Box to ar_factory respectively. The domain of a
Functor -instance m is defined implicitly as the free category generated by the domain of \o_b[and ar.

The two factory methods allow to build functors with arbitrary codomains, ar_factory is required to
provide methods id and then.

Example 1.1 In order to illustrate the syntax, we give a basic example of a free functor.

X, YV, Z Ob(’x’), Ob(C’'y’), 0b(’z’)

f, g, h = Box('f’, x, y), Box(’g’, y, z), Box('h’, z, x)
F = cat.Functor(ob={x: y, y: z, z: x}, ar={f: g, g: h})
assert F(f >> g) == F(£f) >> F(g) == g >> h

Example 1.2 PythonFunctor implements functors into Python functions, see appendix (Al

F = PythonFunctor (
ob={x: 0, y: 1, z: 2}, ar={f: lambda: 42, g: lambda x: (x, x + 1)})
assert F(f >> g)(O == (42, 43)

Example 1.3 The category of matrices is implemented by the Tensor class, see section
F = TensorFunctor (ob={x: 1, y: 2, z: 2}, ar={f: [0, 1], g: [0, 1, 1, 01})
assert F(f >> g) == F(f) >> F(g) == [1, 0]

All the objects, arrows, boxes and functors constructed with DisCoPy are representable in the following
sense: for any instance ‘x, the string ‘repr(x)‘ is a valid Python expression which evaluates to x,

assuming that the names defining x are representable themselves. Hence, DisCoPy data structures can
be serialized and exported in a standard format [66] for interoperability with other category theory tools.
Note that while the data structures and methods of DisCoPy are purely functional, boxes may hold mutable
a @ attribute. It is used to build boxes that are not finitely generated such as the weights of neural
networks (appendix [A)) or the phases of quantum circuits (section [3).

2 monoidal.py

In this section, we describe the core data structure behind DisCoPy: the Diagram class, an implemen-
tation of the arrows of a free monoidal category. We begin with a definition of free monoidal categories
via free premonoidal categories.

Definition 2.1 A (strict) monoidal category is a category C equipped with an associative and unital
functor ® : Cx C — C for X the Cartesian product. A (strict) premonoidal category is a category C
equipped with an associative and unital functor ® : C 0 C — C for O given by the following pushout in
Cat:

CoXDQ — CXDO

! |

CoxD —— CoD

186 DisCoPy: Monoidal Categories in Python

where Cy,Dq are the discrete category of objects and the maps are given by the inclusions.

Example 2.2 The Keisli category for a strong monad over a monoidal category is a premonoidal category.
It is monoidal precisely when the monad is commutative. The state monad over the category of sets yields
a denotational semantics for side-effects [57)].

Example 2.3 For a semiring S, the distribution monad X — SX over the category of finite sets vyields a
premonoidal category with matrices over S as arrows and Kronecker product as tensor. It is monoidal
when S is commutative.

The pushout O is known as the funny tensor product, it may also be defined by the following universal
property. Let C = D be the category where objects are functors C — D and arrows are the transformations
with no naturality requirement. Then — O C is characterised as the left adjoint of C = — in Cat. This
makes O a closed symmetric monoidal structure over Cat, the unique such structure apart from the usual
Cartesian product, see [27]. A functor from the funny tensor product C 0 D can be understood as a
functor which is “separately functorial” in its two arguments C and D, in analogy to separate continuity.
Premonoidal categories are also known as one-object sesquicategories (one-and-a-half categories), i.e.
2-categories without the interchange law, see [67]. Our motivation for working in a premonoidal setting
is two-fold: 1) free premonoidal categories have a simple presentation as free categories and 2) free
monoidal categories may then be described as quotient categories.

We define a monoidal signature X as a pair of sets X, | with a pair of functions into the free monoid
dom,cod : £ — X%. Generating arrows f € X are depicted as boxes with input dom(f) and output
cod(f). Given a monoidal signature X, we define a simple signature L(X) with objects X*, arrows
5 x Xy x 2§ with dom(u, f,v) = usv and cod(u, f,v) = utv for s = dom(f) and ¢ = cod(f). A layer
(u, f,v) € 5 x Xy x X} is depicted as a box with wires to its left and right:

u s

t
Proposition 2.4 Given a monoidal signature X, the free premonoidal category is the free category
PMC(Z) = C(L(X)) generated by the simple signature of layers L(X).

1%

We define a diagram as an arrow of C(L(X)). Diagrams are uniquely defined by a domain, a list of
generators and an offset for each box: the number of wires passing to its left. Two diagrams are equal
in the free monoidal category if they are related by a series of interchangers, where u,v,w € X% and

f b
s—>t,s —>t e

u % s’ w u) % s’ w
f/
~ tl
f/

t/

The right interchangers, going from the right- to the left-hand side of the previous equivalence are
terminating on boundary-connected diagrams. Given a boundary-connected diagram with n boxes, a
normal form can be reached in at most O (n?) steps [25] Theorem 36]. This makes the word problem for
monoidal categories —i.e. given two arbitrary diagrams, are they equal up to interchanger? — decidable
in polynomial time, see [25, Theorem 48].

G. de Felice, A. Toumi & B. Coecke 187

Proposition 2.5 Given a monoidal signature X, the free monoidal category is the quotient MC(Z) =
PMC(X)/T for I the interchanger relation, see Theorem 16].

Example 2.6 Context-free grammars (CFGs) are a special case of free monoidal categories, where
non-terminal symbols are generating objects and production rules are generators with an atomic type as
domain. Syntax trees are diagrams, their normal form correspond to the leftmost derivation in a CFG.
Weighted CFGs can be defined as free monoidal categories equipped with a monoidal functor into a
monoid delooping, see [I63].

Note that a monoidal category generated by one object, i.e. with £o = {1}, is called a PRO. An
example is the category of circuits described in section This combinatorial definition yields an
implementation of the free monoidal category where the generating objects X are given by \O_b[—instances
and the generating arrows X, are given by M—instances.

class monoidal.Ty(x_1, ..., x_n) is a subclass of . A type E is given by a (possibly
empty) list of objects, It has a method x.tensor(y)| shortened to x @ y, which inherits the monoid
structure of lists with the empty type | Ty () as unit.

class monoidal.PRO(n) is a subclass of ‘Ty generated by ‘Ob(l) . A PRO type is given a natural
number n with addition as tensor, i.€. ‘PRO(n) = Ty(n * (1,)) ‘

class monoidal.Layer(left, box, right) is a subclass of cat.Box. A layer is given by a -
instance box|and a pair of E—instances ‘ left and ‘ right ‘ While essential to the internal structure of
DisCoPy, layers remain invisible to the end user of the package.

class monoidal.Diagram(dom, cod, boxes, offsets, layers=None) subclasses|Arrow. A di-

agram f|is given by a pair of types dom, cod| a pair of equal-length sequences boxes, offsets of
Box

-instances and natural numbers respectively. ‘layers‘ is an optional argument, if omitted it will be

computed from ‘ dom, boxes and ‘ offsets ‘ f ‘ has all the methods of ‘ Arrow plus the following:

»

, shortened to‘f @g
(f @ g).boxes == f.boxes + g.boxes and
(f @ g).offsets == f.offsets + [n + len(f.cod) for n in g.offsets].

e f.tensor(g) , returns the diagram with

e f.interchange(i, j, left=False) ‘ returns a diagram with the boxes at indices i and m

interchanged or raises an InterchangerError if they are connected. This method gets called

recursively whenever i < j + 1 ‘ or j <i -1 ‘ If there is a choice in how to interchange, then
we apply the right interchanger by default.

* f.normalize(left=False) ‘ yields a reduction sequence applying right interchangers repeatedly.
Setting left=True|will apply left interchangers instead.

. f.normal_form(left:False)‘ returns the last output of | f.normalize if |f is boundary-
connected, otherwise it raises a NotImplementedError.

documentation [23]] for a complete list of parameters. Diagrams are displayed with matplotlib
[51]] by default, setting ‘ to_tikz=True outputs a list of Tikz commands instead. This is how
all the diagrams in this article were produced.

e f.to_gif(g, h, ..., **params) takes alist of diagrams and returns an animated GIF which
can be used to visualise a rewriting process in a jupyter notebook [42]].

188 DisCoPy: Monoidal Categories in Python

As for ‘Arrow, Diagram-instances can be manipulated as lists. Indexing a diagram E returns a
layer‘Id(left) @ box @ Id(right) suchthat £ == f[0] » ... » f[-1].

class monoidal .Box(name, dom, cod, data=None, _dagger=False) is a subclass of
and Diagram. A box Eis defined as a diagram with f.boxes, f.offsets == [f], [0] ‘

class monoidal.Functor(ob, ar, ob_factory=Ty, ar_factory=Diagram) isasubclassof| cat.

Functor. A monoidal functor E is given by a pair of mappings ob, ar from @ to ob_factory|and
from Box‘ to ‘ar_factory respectively. Factory methods are optional arguments that allow arbitrary

codomains. ob_factory‘ is required to provide a tensor method, ar_factory should provide ’H,
then‘ and ‘ tensor ‘

The implementation of the Diagram data structure and its normal form follows directly from their

formal definitions, they require no further explanation. The implementation of the ’M method however
requires some non-trivial choices: given the combinatorial encoding of a diagram, which embedding on
the plane should we return? Moreover, the drawing algorithm may be treated as a proof of the equivalence
from the combinatorial to the geometric definition of diagrams introduced by Joyal and Street [35} [36]].
The other direction, i.e. from a planar embedding (encoded as a grid of pixels) to its combinatorial
encoding as a DisCoPy Diagram, is part of an in-development application for automated string diagram
recognition. We leave the details to appendix

3 rigid.py

In this section, we describe the module rigid, an implementation of rigid monoidal categories. We
present snake removal, the algorithm for normalising rigid diagrams, and its application to the semantics
of pregroup grammars. Note that rigid categories are also called autonomous 35,24}, they are equivalent
to the compact 2-categories of Preller, Lambek [58]] with one object.

A (strict) monoidal category C is rigid when every object x has left and right adjoints x’ and x” and

four morphisms x ® x! 515 x@x and x" @x <, 1 L x®x" depicted as cups and caps, subject to
(€/®1x)o (1,87)=1,=(1,®€) o (n®1,). Note that any monoidal functor between rigid categories
is isomorphic to a rigid functor, i.e. which sends cups to cups and caps to caps.

In a rigid category, left and right adjoints are unique up to a unique isomorphism. They cancel each
other—i.e. (x!)" =x = (x")! — and they are anti-homomorphisms of the tensor product—i.e. 1/=1" =1,
(x®y) =y'®x' and (x®y)" = y" ®x". Thus, the adjoint of a product can always be written as a product
of adjoints. Given a set of atomic types X, the objects of the free rigid category are given by lists of pairs
(x,n) € Lo x Z with the inclusion Xy < Yo X Z defined by x — (x,0) and the adjoints (x,n)! = (x,n—1)
and (x,n)" = (x,n+1). We define a rigid signature ¥ as a pair of sets Xy, %; with a pair of functions
dom,cod : X — (XX Z)*, then the free rigid category is given by the quotient RC (X) = MC(X’) /R where
¥’ is the monoidal signature with 3 =¥oXZ and £{ =Z; +{cup, : x®x" — l,cap, : 1 — x®x! }xe%.
The cups and caps for the unit are the identity, those for x ® y are given by nesting the cups and caps of x
and y. The relations R are given by the snake equation for every x € X:

X X X

G. de Felice, A. Toumi & B. Coecke 189

i

The rigid module implements classes T7y, Diagram
from monoidal. Pregroup types, i.e. the objects of free rigid categories, are implemented as ’T—y‘—
instances x with two attributes ﬁ‘ and m for the adjoints. Box | has two subclasses Cup and ?m‘
implementing the adjunction for simple types. The Diagram class has two static methods Tps‘ and

caps which implement the adjunction for product types. The normalize and normal_form‘ methods
are overriden to implement snake removal: for each pair of cup and cap forming a snake, we first apply
interchangers to make them adjacent, then replace the snake with an identity, see [26} Definition 2.12].

Box‘ and Functor which subclass those

Example 3.1 A rigid category is compact-closed if it is also symmetric monoidal. In that case, the
left and right adjoints coincide. The category of matrices over a commutative semiring with Kronecker
product as tensor is compact-closed, thus it is rigid.

Example 3.2 Lambek’s pregroup grammars [46, 47, 48] can be defined in terms of free rigid categories.
Indeed, a pregroup is a thin rigid category, i.e. with at most one arrow between any two objects. A
pregroup grammar G is given by a vocabulary V, a finite set of basic types B with s € B the sentence
type and a finite dictionnary D CV X (B X Z)* assigning pregroup types to words. Let g be the rigid
signature with generating objects V + B and arrows w — t for each dictionnary entry (w,t) € D and
G =RC(Zg). The language of G is given by L(G) ={u € V* |3 f :u — s € G}. That is, a list of words
u € V* is a grammatical sentence whenever there is a diagram f = god with d : u — t a product of
dictionnary entries and g :t — s a pregroup derivation generated by cups and caps. We do not draw
the wires for words and depict the dictionnary entries as triangles. For example, let B = {s,n} and
D = {one, two, three = n, plus —n" @n®n', equals — n" @s@n'}, then “one plus two equals three”
is a grammatical sentence:

one plus two qua three

Example 3.3 For any monoidal category C, there is a free rigid category A(C) with a fully-faithful
monoidal functor C — A(C), see [24)]. Concretely, this means that in a rigid diagram with boxes coming
from a monoidal category, if the domain and codomain have no adjoint types then all snakes can be
removed. This allows to give a semantics to a pregroup grammar G as a rigid functor F : G — A(C).
For example, let one, two : 1 — n and plus : nXn — n be functions, then we can compute the meaning of
“one plus two”:

plus
n

where the first step is snake removal and the second is function evaluation as in appendix[4l

190 DisCoPy: Monoidal Categories in Python

4 tensor.py

Let Matg be the category with objects the natural numbers and arrows m — n the matrices [n] X [m] — S
for a commutative semiring S, with Kronecker product as tensor. Matg is compact closed, i.e. both
symmetric monoidal and rigid. It is furthermore self-dual, i.e. objects are isomorphic to their adjoints.
For S =B, we get a category equivalent to finite sets and relations with Cartesian product. For S =C, it
is equivalent to finite-dimensional complex vector spaces and linear maps with the usual tensor product.
In practice, it is more convenient to consider an equivalent category Tensors where objects are lists of
natural numbers and adjoints are given by list reversal. Arrows (my,...,my) — (ny,...,ny) are tensors
of order k+k’, i.e. matrices m X --Xmy — ny X -+ X ngr.

class Dim(n_0®, ..., n_k) isasubclass of rigid.Ty generated by natural numbers.

class Tensor(dom, cod, array) isasubclassof rigid.Box|given by Dim-instances dom and cod
and a numpy [69]] array of the appropriate shape. then‘ and ‘tensor‘ are both implemented using

numpy . tensordot, cups‘ and‘caps return a reshaped identity.

class TensorFunctor(ob, ar) is a subclass of rigid.Functor‘ where W and ar| are mappings

from?y‘to Dim and from‘Box to‘Tensor respectively.

Remark 4.1 All the methods of the| Tensor class are writen in jax .numpy, the subset of Python+numpy
that supports automatic differentiation with jax [31].

Example 4.2 Tensor networks can be defined as diagrams with a functor into tensors, contraction is given
by functor application. They have been applied to both condensed matter physics and machine learning,
see [54] for an introduction. Interfacing DisCoPy with tensor network tools such as [43] [33] [61] is left
for future work.

Example 4.3 Relational databases can be defined as Boolean tensors: a table with k columns is a state
1 — (ny,...,nx) in Tensorg. Conjunctive queries are diagrams, where query containment gives the
structure of a free Cartesian bicategory, see [10|]. Query evaluation over a relational database is the
application a functor into Boolean tensors.

Example 4.4 The distributional compositional (DisCo) models of Coecke et al. [14)|15] can be defined as
functors F : G — Tensors from the rigid category G generated by a pregroup grammar (see example|[3.2))
into tensors, i.e. they map pregroup types t € G to dimensions F(t) € N* and dictionnary entries w — t
to tensors of shape F(t). When F (s) = 1, the meaning for a grammatical sentence g : wi...w, — s is a
scalar F(g) € S which can be computed as the contraction of a tensor network. DisCo models into real
vector spaces, i.e. with S =R, received experimental support, see [132 38| 137]. Relational DisCo models,
i.e. with S =B, have been applied to question answering, see [18,122]].

5 circuit.py

Quantum circuits are a standard model for quantum computation. They form the arrows of a PROP,
i.e. a symmetric monoidal category generated by one object, called a qubit. We define Circ as the free
PROP generated by n-qubit gates g : n — n, scalars {s : 0 — O};cc, post-selection {bra; : 1 — O};c(0,1}
and preparation {ket; : 0 — 1};c0,1} of ancilla qubits in the computational basis. Circuit evaluation is
defined as a monoidal functor eval : Circ — Tensorc which sends each gate g : n — n to its unitary
matrix eval(g) : 2" — 2",

G. de Felice, A. Toumi & B. Coecke 191

Given the circuit for an n-qubit state ¢ : 0 — n, measurement results are a tensor measure(c) : 1 — 2"
of non-negative reals in Tensorg+, computed using the Born rule. Note that if a circuit contains scalars
or post selection, the measurement results need not be a normalised probability distribution.

The quotient Circ., where ¢ = ¢’ iff eval(c) = eval(c’), is a compact-closed category. Cups and
caps are given by the (unnormalised) Bell effect and state, the snake equation implies the correctness of the
teleportation protocol. See [20]] for an introduction to diagrammatic reasoning and quantum processes.

-instances

class Circuit(dom, cod, boxes, offsets) isa subclass of rigid.Diagram‘with PRO

as dom and cod. It has methods eval, implemented as a ‘TensorFunctor
computes the Born rule.

, and |measure| which

class Bra(b_0, ..., b_n) andKet(b_0, ..., b_n) are subclasses of‘Circuit‘ and‘rigid.Box‘
given by a bitstring b_0, ..., b_n ‘

class Gate(name, n_qubits, array) is asubclass of Circuit and‘rigid.Box‘ with instances H,
CX, SWAP|, etc. Phases are implemented as subclasses Rx and @‘

class CircuitFunctor(ob, ar) is a subclass of‘rigid .Functor where m and E‘ are mappings
from Ty to PRO and from Box to‘Circuit‘respectively,

The methods ‘to_tk‘ and ‘from_tk‘ translate back and forth between DisCoPy’s Circuit| class
and that of t|ket) [64], which can then be compiled and executed on quantum hardware or simplified
using pyzx [40]. Note that in the translation from DisCoPy diagrams to the directed acyclic graphs of
t|ket), we treat the ‘SWAP gate as a logical gate, i.e. it simply renames the two qubits. In the other

direction, we introduce SWAP‘ gates whenever a t|ket) gate is applied to non-adjacent qubits. Thus,

from_tk(c.to_tk())‘ is equal to the original circuit @ up to the axioms of symmetric monoidal
categories.

Example 5.1 The quantum algorithms for natural language processing (NLP) of [71] can be defined
as rigid functors G — Circ from a pregroup grammar (see examples and E4) to the category of
circuits. See [|17] for a discussion of distributional compositional models for NLP on quantum hardware.
A proof-of-concept was implemented using DisCoPy, see the notebook of the first experiments herel and
there/ [52!] for more details.

References

[1] S. Abramsky (1996): Retracing Some Paths in Process Algebra. In: CONCUR’96: Concurrency Theory,
Lecture Notes in Computer Science 1119, Springer, pp. 1-17, doi;10.1007/3-540-61604-7_44.

[2] Samson Abramsky & Bob Coecke (2008): Categorical Quantum Mechanics. larXiv:0808.1023 [quant-ph].

[3] Steve Awodey (2006): Category Theory. Ebsco Publishing,
doi:i10.1093/acprof:0s0/9780198568612.001.0001.

[4] John C. Baez, Brandon Coya & Franciscus Rebro (2018): Props in Network Theory. larXiv:1707.08321
[math-ph].

[5] John C. Baez & Jason Erbele (2014): Categories in Control. larXiv:1405.6881| [quant-ph].

[6] John C. Baez & Brendan Fong (2015): A Compositional Framework for Passive Linear Networks.

[7] John C. Baez & Blake S. Pollard (2017): A Compositional Framework for Reaction Networks. Reviews in
Mathematical Physics 29(09), p. 1750028, doi:10.1142/S0129055X17500283.

[8] Krzysztof Bar, Aleks Kissinger & Jamie Vicary: Globular: An Online Proof Assistant for Higher-Dimensional
Rewriting. larXiv:1612.01093|[cs, math], doi;10.23638/LMCS-14(1:8)2018.

https://github.com/oxford-quantum-group/discopy/blob/master/notebooks/qnlp-experiment.ipynb
https://medium.com/cambridge-quantum-computing/quantum-natural-language-processing-748d6f27b31d
https://doi.org/10.1007/3-540-61604-7_44
https://arxiv.org/abs/0808.1023
https://doi.org/10.1093/acprof:oso/9780198568612.001.0001
https://arxiv.org/abs/1707.08321
https://arxiv.org/abs/1405.6881
https://doi.org/10.1142/S0129055X17500283
https://arxiv.org/abs/1612.01093
https://doi.org/10.23638/LMCS-14(1:8)2018

192

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[27]

(28]
[29]

DisCoPy: Monoidal Categories in Python

Joe Bolt, Bob Coecke, Fabrizio Genovese, Martha Lewis, Dan Marsden & Robin Piedeleu (2017): Interacting
Conceptual Spaces I : Grammatical Composition of Concepts. CoRR abs/1703.08314.

Filippo Bonchi, Jens Seeber & Pawel Sobocinski (2018): Graphical Conjunctive Queries. In Dan
Ghica & Achim Jung, editors: 27th FACSL Annual Conference on Computer Science Logic (CSL
2018), Leibniz International Proceedings in Informatics (LIPIcs) 119, Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, pp. 13:1-13:23, doi:10.4230/LIPIcs.CSL.2018.13. Available at
http://drops.dagstuhl.de/opus/volltexte/2018/9680.

Filippo Bonchi, Pawet Sobociriski & Fabio Zanasi (2014): A Categorical Semantics of Signal Flow Graphs.
In Paolo Baldan & Daniele Gorla, editors: CONCUR 2014 — Concurrency Theory, Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, pp. 435450, doi:10.1007/978-3-662-44584-6_30.

C. Brown & G. Hutton (1994): Categories, Allegories and Circuit Design. In: Proceedings of the 9th
Annual IEEE Symposium on Logic in Computer Science (LICS), IEEE Computer Society, pp. 372-381,
doi:10.1109/LICS.1994.316052.

Kenta Cho & Bart Jacobs (2019): Disintegration and Bayesian Inversion via String Diagrams. Mathematical
Structures in Computer Science 29(7), pp. 938-971, doi:10.1017/S0960129518000488.

Stephen Clark, Bob Coecke & Mehrnoosh Sadrzadeh (2008): A Compositional Distributional Model of
Meaning. In: Proceedings of the Second Symposium on Quantum Interaction (QI-2008), pp. 133-140.

Stephen Clark, Bob Coecke & Mehrnoosh Sadrzadeh (2010): Mathematical Foundations for a Compositional
Distributional Model of Meaning. In J. van Benthem, M. Moortgat & W. Buszkowski, editors: A Festschrift
for Jim Lambek, Linguistic Analysis 36, pp. 345-384.

Bob Coecke (2005): Kindergarten Quantum Mechanics. arXiv:quant-ph/0510032, doi:10.1063/1.2158713.
Bob Coecke (2019): The Mathematics of Text Structure.

Bob Coecke, Giovanni de Felice, Dan Marsden & Alexis Toumi (2018): Towards Compositional Dis-
tributional Discourse Analysis. Electronic Proceedings in Theoretical Computer Science 283, pp. 1-12,
doi:10.4204/EPTCS.283.1.

Bob Coecke & Ross Duncan (2008): Interacting Quantum Observables. In Luca Aceto, Ivan Damgérd,
Leslie Ann Goldberg, Magnis M. Halldérsson, Anna Ingélfsdéttir & Igor Walukiewicz, editors: Automata,
Languages and Programming, Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 298-310,
doi:10.1007/978-3-540-70583-3_25.

Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes: A First Course in Quantum Theory
and Diagrammatic Reasoning. Cambridge University Press, doii10.1017/9781316219317.

Bob Coecke & Robert W. Spekkens (2012): Picturing Classical and Quantum Bayesian Inference. Synthese
186(3), pp. 651-696, doi:10.1007/s11229-011-9917-5.

Giovanni de Felice, Konstantinos Meichanetzidis & Alexis Toumi (2019): Functorial Question Answering.
arXiv:1905.07408 [cs, math], doi:10.4204/EPTCS.323.6.

Giovanni de Felice & Alexis Toumi: Discopy 0.2.3 Documentation. https://discopy.readthedocs.io/en/master/.

Antonin Delpeuch (2014): Autonomization of Monoidal Categories. larXiv:1411.3827 [cs, math],
doii10.4204/EPTCS.323.3.

Antonin Delpeuch & Jamie Vicary (2018): Normalization for Planar String Diagrams and a Quadratic
Equivalence Algorithm. arXiv:1804.07832 [cs].

Lawrence Dunn & Jamie Vicary (2019): Coherence for Frobenius Pseudomonoids and the Geometry of
Linear Proofs. arXiv:1601.05372 [cs], doij10.23638/LMCS-15(3:5)2019.

Francois Foltz, Christian Lair & GM Kelly (1980): Algebraic Categories with Few Monoidal Biclosed Struc-
tures or None. Journal of Pure and Applied Algebra 17(2), pp. 171-177,d0i:10.1016/0022-4049(80)90082-1.

Brendan Fong & Michael Johnson (2019): Lenses and Learners. larXiv:1903.03671 [cs, math].

Brendan Fong, David I. Spivak & Rémy Tuyéras (2017): Backprop as Functor: A Compositional Perspective
on Supervised Learning. doii10.1109/LICS.2019.8785665.

https://doi.org/10.4230/LIPIcs.CSL.2018.13
http://drops.dagstuhl.de/opus/volltexte/2018/9680
https://doi.org/10.1007/978-3-662-44584-6_30
https://doi.org/10.1109/LICS.1994.316052
https://doi.org/10.1017/S0960129518000488
https://arxiv.org/abs/quant-ph/0510032
https://doi.org/10.1063/1.2158713
https://doi.org/10.4204/EPTCS.283.1
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1017/9781316219317
https://doi.org/10.1007/s11229-011-9917-5
https://arxiv.org/abs/1905.07408
https://doi.org/10.4204/EPTCS.323.6
https://arxiv.org/abs/1411.3827
https://doi.org/10.4204/EPTCS.323.3
https://arxiv.org/abs/1804.07832
https://arxiv.org/abs/1601.05372
https://doi.org/10.23638/LMCS-15(3:5)2019
https://doi.org/10.1016/0022-4049(80)90082-1
https://arxiv.org/abs/1903.03671
https://doi.org/10.1109/LICS.2019.8785665

G. de Felice, A. Toumi & B. Coecke 193

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Neil Ghani, Jules Hedges, Viktor Winschel & Philipp Zahn (2018): Compositional Game Theory.
arXiv:1603.04641 [cs], doii10.1145/3209108.3209165.

google/jax (2020): Composable Transformations of Python+NumPy Programs: Differentiate, Vectorize, JIT
to GPU/TPU, and More. https://github.com/google/jax.

Edward Grefenstette & Mehrnoosh Sadrzadeh (2011): Experimental Supportfor a Categorical Compositional
Distributional Model of Meaning. In: The 2014 Conference on Empirical Methods on Natural Language
Processing., pp. 1394-1404.

Johannes Hauschild & Frank Pollmann (2018): Efficient Numerical Simulations with Tensor Networks: Tensor
Network Python (TeNPy). SciPost Physics Lecture Notes, p. 5, doi110.21468/SciPostPhysLectNotes.5.

Giinter Hotz (1965): Eine Algebraisierung Des Syntheseproblems von Schaltkreisen I. Elektronische Infor-
mationsverarbeitung und Kybernetik 1, pp. 185-205.

André Joyal & Ross Street (1988): Planar Diagrams and Tensor Algebra. Unpublished manuscript, available
from Ross Street’s website.

André Joyal & Ross Street (1991): The Geometry of Tensor Calculus, 1. Advances in Mathematics 88(1), pp.
55-112, doi:10.1016/0001-8708(91)90003-P.

Dimitri Kartsaklis, Mehrnoosh Sadrzadeh & Stephen Pulman (2013): Separating Disambiguation from
Composition in Distributional Semantics, p. 10.

Dimitri Kartsaklis, Mehrnoosh Sadrzadeh & Stephen G. Pulman (2012): A Unified Sentence Space for
Categorical Distributional-Compositional Semantics: Theory and Experiments. In: COLING.

Aleks Kissinger & Sander Uijlen (2019): A Categorical Semantics for Causal Structure. larXiv:1701.04732
[math-ph, physics:quant-ph], doi:10.23638/LMCS-15(3:15)2019.

Aleks Kissinger & John van de Wetering (2019): PyZX: Large Scale Automated Diagrammatic Reasoning.
arXiv:1904.04735 [quant-ph], doii10.4204/EPTCS.318.14.

Aleks Kissinger & Vladimir Zamdzhiev (2015): Quantomatic: A Proof Assistant for Diagrammatic Rea-
soning. In Amy P. Felty & Aart Middeldorp, editors: Automated Deduction - CADE-25, Lecture Notes in
Computer Science, Springer International Publishing, pp. 326336, doi:10.1007/978-3-319-21401-6_22,

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias Bussonnier,
Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain Corlay et al. (2016): Jupyter
Notebooks-a Publishing Format for Reproducible Computational Workflows. In: ELPUB, pp. 87-90,
doii10.3233/978-1-61499-649-1-87.

Jean Kossaifi, Yannis Panagakis, Anima Anandkumar & Maja Pantic (2018): TensorLy: Tensor Learning in
Python. larXiv:1610.09555 [cs].

Stephen Lack (2004): Composing PROPs. Theory and Applications of Categories [electronic only] 13, pp.
147-163.

Yves Lafont (2003): Towards an Algebraic Theory of Boolean Circuits. Journal of Pure and Applied Algebra
184(2-3), pp. 257-310, doi{10.1016/S0022-4049(03)00069-0.

Joachim Lambek (1999): Type Grammar Revisited. In Alain Lecomte, Francois Lamarche & Guy Perrier,
editors: Logical Aspects of Computational Linguistics, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
1-27, doi{10.1007/3-540-48975-4_1.

Joachim Lambek (2001): Type Grammars as Pregroups. Grammars 4, pp. 21-39,
doi:10.1023/A:1011444711686.

Joachim Lambek (2008): From Word to Sentence: A Computational Algebraic Approach to Grammar. Open
Access Publications, Polimetrica.

S.M. Lane (1998): Categories for the Working Mathematician. Graduate Texts in Mathematics, Springer
New York, doi:10.1007/978-1-4612-9839-7.

F. William Lawvere (1963): Functorial Semantics of Algebraic Theories. Proceedings of the National
Academy of Sciences of the United States of America 50(5), pp. 869—872, doi:10.1073/pnas.50.5.8609.

https://arxiv.org/abs/1603.04641
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://doi.org/10.1016/0001-8708(91)90003-P
https://arxiv.org/abs/1701.04732
https://doi.org/10.23638/LMCS-15(3:15)2019
https://arxiv.org/abs/1904.04735
https://doi.org/10.4204/EPTCS.318.14
https://doi.org/10.1007/978-3-319-21401-6_22
https://doi.org/10.3233/978-1-61499-649-1-87
https://arxiv.org/abs/1610.09555
https://doi.org/10.1016/S0022-4049(03)00069-0
https://doi.org/10.1007/3-540-48975-4_1
https://doi.org/10.1023/A:1011444711686
https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1073/pnas.50.5.869

[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]

[70]
[71]

A

DisCoPy: Monoidal Categories in Python

matplotlib (2020): Plotting with Python. https://github.com/matplotlib/matplotlib.

Konstantinos Meichanetzidis (2020): Quantum Natural Language Processing.
https://medium.com/cambridge-quantum-computing/quantum-natural-language-processing-748d6f27b31d.

networkx (2020): Python Software for Complex Networks. https://github.com/networkx/networkx.

Roman Orus (2014): A Practical Introduction to Tensor Networks: Matrix Product States and Projected
Entangled Pair States. Annals of Physics 349, pp. 117-158, doi:10.1016/j.a0p.2014.06.013,

Evan Patterson (2017): Knowledge Representation in Bicategories of Relations. arXiv:1706.00526 [cs, math].
Roger Penrose (1971): Applications of Negative Dimensional Tensors. Scribd.

John Power & Edmund Robinson (1997): Premonoidal Categories and Notions of Computation. Mathematical
Structures in Computer Science 7(5), pp. 453—468, doi:10.1017/S0960129597002375.

Anne Preller & Joachim Lambek (2007): Free Compact 2-Categories. Mathematical Structures in Computer
Science 17(2), pp. 309-340, doii10.1017/S0960129506005901.

David Reutter & Jamie Vicary (2019): High-Level Methods for Homotopy Construction in Associative n-
Categories. larXiv:1902.0383 1/ [math], doi{10.1109/LICS.2019.8785895.

Mitchell Riley (2018): Categories of Optics. arXiv:1809.00738 [math].

Chase Roberts, Ashley Milsted, Martin Ganahl, Adam Zalcman, Bruce Fontaine, Yijian Zou, Jack Hidary,
Guifre Vidal & Stefan Leichenauer (2019): TensorNetwork: A Library for Physics and Machine Learning.
arXiv:1905.01330 [cond-mat, physics:hep-th, physics:physics, stat].

P. Selinger (2010): A Survey of Graphical Languages for Monoidal Categories. New Structures for Physics,
pp. 289-355, doi:10.1007/978-3-642-12821-9 4.

Dan Shiebler, Alexis Toumi & Mehrnoosh Sadrzadeh (2020): Incremental Monoidal Grammars.
arXiv:2001.02296 [cs].

Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington & Ross Duncan (2020):
Tket : A Retargetable Compiler for NISQ Devices. larXiv:2003.1061 1/ [quant-ph].

Pawel Sobocinski, Paul W. Wilson & Fabio Zanasi (2019): CARTOGRAPHER: A Tool for String Diagram-
matic Reasoning. In: CALCO 2019, 139, pp. 20:1-20:7, doi:10.4230/LIPIcs.CALCO.2019.20.

Statebox (2020): Exchange Format for Morphisms in Monoidal Categories.
https://github.com/statebox/monmor-spec.

Ross Street (1996): Categorical Structures. Handbook of algebra 1, pp. 529-577.

Till Tantau (2013): Graph Drawing in TikZ. In Walter Didimo & Maurizio Patrignani, editors:
Graph Drawing, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 517-528,
doii10.1007/978-3-642-36763-2_46.

Stefan van der Walt, S. Chris Colbert & Gael Varoquaux (2011): The NumPy Array: A Structure for Efficient
Numerical Computation. Computing in Science Engineering 13(2), pp. 22-30, doii10.1109/MCSE.2011.37.

Simon Wadsley & Nick Woods (2015): PROPs for Linear Systems. arXiv:1505.00048 [math].

William Zeng & Bob Coecke (2016): Quantum Algorithms for Compositional Natural Language Processing.
Electronic Proceedings in Theoretical Computer Science 221, pp. 67-75, doi:10.4204/EPTCS.221.8.

cartesian.py

This appendix describes cartesian.Diagram and |PythonFunctor, an implementation of Lawvere
theories and their models. We first give a short introduction to symmetric monoidal categories (SMC),
PROPs and functorial semantics.

A (strict) monoidal category C is symmetric when it comes equipped with a natural transformation

Ox,y :X®y — y®x such that o 00y y = lygy (involution) and oy ye, = (1; ® 0 z) 0 (0x,y ® 1;)

https://doi.org/10.1016/j.aop.2014.06.013
https://arxiv.org/abs/1706.00526
https://doi.org/10.1017/S0960129597002375
https://doi.org/10.1017/S0960129506005901
https://arxiv.org/abs/1902.03831
https://doi.org/10.1109/LICS.2019.8785895
https://arxiv.org/abs/1809.00738
https://arxiv.org/abs/1905.01330
https://doi.org/10.1007/978-3-642-12821-9_4
https://arxiv.org/abs/2001.02296
https://arxiv.org/abs/2003.10611
https://doi.org/10.4230/LIPIcs.CALCO.2019.20
https://doi.org/10.1007/978-3-642-36763-2_46
https://doi.org/10.1109/MCSE.2011.37
https://arxiv.org/abs/1505.00048
https://doi.org/10.4204/EPTCS.221.8

G. de Felice, A. Toumi & B. Coecke 195

(hexagon). A component oy y is depicted as a swap of the wires for x and y. The free symmetric
monoidal category SMC(X) generated by a monoidal signature X can be defined as a quotient MC(X") /S
of the free monoidal category generated by the disjoint union X' =X+ {0y, } The relation S is
generated by the rules for involution and naturality:

X, y€Xp"

X y

~ and

for all x,y,z € ¥p and f : s — tin X’. Note that s,# € X} may be of arbitrary length, in which case o,
and oy ; are defined as ladders of swaps, i.e. the symmetry for compound types oxgy,; and oy yg; is
defined inductively by:

and

The symmetry for the empty type is defined to be the identity o | = 01 x = 1x. An SMC where the
tensor is the Cartesian product and the unit is terminal (i.e. a category with finite products) is called
a Cartesian category. Equivalently, an SMC is Cartesian when objects carry a natural commutative
comonoid structure [[62, 6.1]. Given a monoidal signature X, the free Cartesian category CC(X) is
the quotient MC(Z") /(S +P) for 2" =% +{pty : X > X®X } 5, +{€x : X = 1} 5. The components
Uy and €, are depicted as wire splitting and ending respectively. The comonoids of non-atomic types
inductively. That for the unit is the identity and the comonoid of x ® y is given by:

X y
and L

The relation (S + %) is given by the axioms for commutative comonoids plus naturality of symmetry,
coproduct and counit for each generating arrow. A PROP (PROduct and Permutation) [44]] is an SMC
generated by one object, a Lawvere theory [50] is a Cartesian category generated one object.

Lawvere theories are implemented by the class cartesian.Diagram, a subclass of

i

monoidal .Diagram with static methods swap|, copy and ‘ delete implementing the structural mor-

phisms. ‘cartesian . Box‘ is a subclass of ‘monoidal .Box where each instance holds a Python function
with natural numbers as domain and codomain. A Cartesian box ‘ £ with ‘ f.dom, f.cod == (m, n) ‘
sends m-tuples to n-tuples, it can be defined in the standard syntax for Python functions using the
decorator ‘@disco (m, n). Swap| Copy‘ and ‘Del‘ are subclasses of ‘cartesian.Box‘ which im-

plement the symmetry and comonoid on the generating object. ‘cartesian.Functor‘ is a sub-
class of ‘monoidal.Functor‘ which preserves symmetry and product. Function is a subclass of

196 DisCoPy: Monoidal Categories in Python

cartesian. Box‘ where then‘ and tensor| are overriden by function composition and tuple concate-

nation. The PythonFunctor‘ class implements Cartesian functors into |Function, i.e. it maps the
formal composition of diagrams to the concrete composition of functions. Note that when ﬂ and m have
side-effects, the tensor £ @ g is in general different from Id(f.dom) @ g » £ @ Id(g.cod) . Thus,
Function is closer to the implementation of a premonoidal than a monoidal category, see example 2.2]

Example A.1 The Lawvere theory F with no generating arrows is the opposite of the category of finite sets
with disjoint union as monoidal structure: diagrams f : m — n in ¥ correspond precisely to the graphs
of the functions f : [n] — [m]. The subcategories of diagrams in ¥ with no coproduct, no counit and no
symmetry correspond to injective, surjective and monotone functions respectively. The subcategory of F
generated by symmetry alone, i.e. the free SMC generated by one object, corresponds to bijections. The
normal form for diagrams in F is given by decomposing any function into a surjection and a monotone
injection, see [45, Theorem 3].

Example A.2 For a semiring S, the category of matrices over S with direct sum as monoidal product
can be defined as a Lawvere theory generated by a commutative monoid +:2 — 1 withunite : 0 — 1 and
scalars {s:1 — 1},c5. The relations are given by the axioms for semirings, see [70]. The naturality
relation for the comonoid with respect to + and e are called the bialgebra laws, they have applications in
control and network theory [5 4].

Example A.3 Let NN be the Lawvere theory generated by sum + :2 — 1, activation a : 1 — 1, finite
sets of weights {w; : 1 — 1},cw and biases {b; : 0 — 1},.5. The arrows of NN are the diagrams of
neural network architectures. Given a set of parameters 6 : W+ B — R, an implementation is given
by the model Fg : NN — Set such that Fo(1) =R, Fg(b;) ={ () — 0(b;) }, Fo(w;) ={x+— 0(w;)-x},
Fo(+)={(x,y) » x+y}and Fg(a) : R — Risanon-linearity such as sigmoid. Alossl:(R™ —-R") >R
for an architecture f : m — n in NN takes an implementation and returns a real number encoding its
success at some data-driven task. The gradient of 0 — [(Fg(f)) can be computed by back-propagation
over the architecture f, using automatic differentiation tools such as jax [31|]. The back-propagation
algorithm is itself part of a functor NN — Learn, where Learn is a Cartesian category of supervised
learning algorithms, see [29, 28)].

B drawing.py

We reformulate some of the definitions and results from Joyal, Street [35]].

Definition B.1 A topological graph, also called 1d cell complex, is a tuple (I',T,T"1) of a Hausdorff
space I" and a closed, discrete subset I'y C " of nodes such that I' =Ty = | |I'1 is the sum of its connected
components I'1, called edges, each homeomorphic to an open intervals with boundary in I'y.

Definition B.2 A planar graph between two real numbers a < b is a finite topological graph I" embedded
inR X [a,b] such that every x eI'N(Rx{a,b}) is a node in T'y and belongs to the closure of exactly one
edge in 1.

The points in 'y N (RXx {a,b}) are called outer nodes, they are the boundary of the domain and
codomain dom(I"), cod(I") € I'7 of the planar graph I'. The points f € ['o— (R x {a,b}) are called inner
nodes, they have a domain and codomain dom(f), cod(f) € I'y given by the edges that have f as boundary.
The composition I'oI'” and tensor '@ I’ are defined by rescaling and pasting the two planar graphs I',I"
vertically and horizontally respectively, see [35) §4].

G. de Felice, A. Toumi & B. Coecke 197

A planar graph I' is progressive, or recuambent, when the second projection e — [a, b] is injective for
every edge e € I'y. Progressive planar graphs have no cups or caps. A progressive planar graph is generic
when the projection I'g — (R x{a,b}) — (a,b) is injective, i.e. there are no two inner nodes at the same
height. A deformation of planar graphs is a continuous map % : I'x [0,1] — [a,b] X R such that 1) for
all t € [0,1], h(—,¢) is an embedding whose image is a planar graph, and 2) for all x € I'y, if A(x,?) is
inner for some ¢ then it is inner for all values of t € [0, 1]. A deformation of planar graphs is progressive
(generic) when for all ¢ € [0, 1], h(—,) is progressive (generic).

The induced equivalence relation — with I'g ~ I'; if and only if there is a deformation A with
h(—,0) =T and h(—, 1) =I'] — is a congruence with respect to composition and tensor of planar graphs,
ie. if g ~T' and Qg ~ Q then () ® Qy ~ "1 ®Q; and [0 Qy ~ '] 0 Q. Furthermore, tensor and
composition are associative and they respect the interchange law up to progessive deformation. Thus,
progessive planar graphs up to progessive deformation form a strict monoidal category [135, Proposition 4].

Given a monoidal signature X, a valuation v of a planar graph I" is a pair of functions vy : '} — X
and v; : o — (Rx{a,b}) — X that send edges to objects and inner nodes to arrows, which commute
with domain and codomain. Progressive planar graphs valued in X (up to progressive deformation) are
the free monoidal category [35, Theorem 5]. We conjecture that generic planar graphs up to generic
deformation are the free premonoidal category.

From the universal property, we know that the category of progressive planar graph is equivalent to
the combinatorial definition of free monoidal categories given in section 2l Concretely, this equivalence
is witnessed by the following pair of algorithms translating between planar graphs and diagrams.

Input : A progressive planar graph I
Output Diagram(dom, cod, boxes, offsets)‘

1 Compute the connected components I'; and their boundaries I'.
2 Order the nodes by height and partition them into I'y = dom + boxes + cod‘.

3 Find the start and end points ['] — (‘ dom‘+ boxes‘) X (boxes‘+ cod‘) for each edge, the

preimage of this map gives the domain and codomain for each box.
4 Compute ‘ offsets as the number of edges to the left of each box.
Algorithm 1: read

Input : Diagram(dom, cod, boxes, offsets)‘
Output A progressive planar graph I

1 SetI'y:={(i,0) |i < len(dom) } and I'; := 0.

2 for‘height, (box, offset) in enumerate(zip(boxes, offsets)) do

3 Deform I' so that there is at least len(box.cod) + 1 ‘ horizontal space between the edges
of cod(I') at index‘offset and‘offset + len(box.dom) .

4 Setl'g:=Tp+ {‘box ‘} for‘box = (m, height + %) with m computed at step Bland
r=ri+{x—- box‘ | x e‘box.dom‘}+{‘box — x| x € box.cod}.

5 Return I' :=T'+{(i,j) — (i, max(len(boxes), 1) ‘) | (i,j) € cod(I)}.

Algorithm 2: draw

	210922_PC_12
	200506_CQ_DisCoPy- Monoidal Categories in Python
	1 cat.py
	2 monoidal.py
	3 rigid.py
	4 tensor.py
	5 circuit.py
	A cartesian.py
	B drawing.py

