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We introduce DisCoPy, an open source toolbox for computing with monoidal categories. The library

provides an intuitive syntax for defining string diagrams and monoidal functors. Its modularity allows

the efficient implementation of computational experiments in the various applications of category

theory where diagrams have become a lingua franca. As an example, we used DisCoPy to perform

natural language processing on quantum hardware for the first time.

Introduction

String diagrams are a graphical calculus for monoidal categories, introduced independently by Hotz [34]

in computer science and Penrose [56] in physics, then formalised by Joyal and Street [35, 36]. Graphical

languages are surveyed in Selinger [62], they have become a standard tool in applied category theory.

We cite a few of the growing list of applications: computer science [12, 1], quantum theory and the ZX-

calculus [16, 2, 19], networks and control theory [5, 6, 7], concurrency [11], databases and knowledge

representation [55, 10], Bayesian reasoning and causality [21, 13, 39], linguistics and cognition [14, 9],

functional programming [60], machine learning and game theory [29, 30]. In all these applications,

string diagrams are the syntax and structure-preserving functors are used to compute their semantics in

concrete categories.

There are several existing proof assistants with graphical user interfaces for rewriting string diagrams

in a more or less automated fashion: quantomatic [41] and PyZX [40] for the ZX-calculus, globular

[8] and its successor homotopy.io [59] for higher categories, cartographer [65] for symmetric monoidal

categories. However, these are all stand-alone tools which use different task-specific encodings for

diagrams, preventing interoperability between them and with the software ecosystems of application

domains.

DisCoPy (Distributional Compositional Python) is not yet-another rewriting tool, rather it is meant

as a toolbox for compiling diagrams into code, be it for neural networks, tensor computation or quantum

circuits. It provides an intuitive Python syntax for diagrams, allowing to visualise and reason about

computation at a high level of abstraction. Monoidal functors allow to translate these diagrams into

concrete computation, interfacing with optimised task-specific libraries. DisCoPy is an open source

package, it is available with an extensive documentation and demonstration notebooks hosted at:

https://github.com/oxford-quantum-group/discopy

This paper describes the architecture of DisCoPy, focusing on the translation from abstract categorical

definitions into their concrete implementation in Python. We assume some working knowledge of

category theory and refer the reader to [49] and to [3] for an introduction. Implementing a category in an

object-oriented programming language amounts to defining a pair of classes for its objects and arrows,

together with a pair of methods for identity and composition. When the category is free, composition

is implemented by list concatenation and identity by the empty list. Concrete categories may then be

defined by subclassing this free category and overriding identity and composition. These are expected to

respect the usual associativity and unit axioms, however they cannot be formally checked in Python.

http://dx.doi.org/10.4204/EPTCS.333.13
https://github.com/oxford-quantum-group/discopy
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Starting from free categories (section 1) as a base class, more structure can be added by subclassing

and adding new methods. Quotient categories can be implemented by a method for computing normal

forms. For instance, monoidal categories (section 2) subclass categories with an extra method for tensor

product and one for interchanger normal form. For now, we implemented Cartesian and rigid monoidal

categories (section 3), as these provide a syntax for the concrete categories implemented in DisCoPy:

Python functions (appendix A) and numpy [69] tensors (section 4). The development of DisCoPy was

first motivated by the implementation of natural language processing on quantum hardware. Hence, we

implemented quantum circuits (section 5) as a subclass of rigid monoidal categories with an extra method

for evaluation as numpy tensors and interface with the t|ket〉 compiler [64].

We hope that this toolbox will prove to be of use to the applied category theory community, and plan

on adding more categorical tools to it in the future.

1 cat.py

We give a brief introduction to the concepts of signatures, free categories and functors, fixing some

notation for the rest of the paper. We then describe how these concepts, once implemented in Python,

give the architecture of cat , the first module of the DisCoPy package.

A simple signature Σ is given by a pair of sets Σ0,Σ1 of generating objects and arrows, and a pair of

functions dom,cod :Σ1 →Σ0 called the domain and the codomain respectively. A morphism of signatures

� : Σ→ Σ
′ is a pair of functions �0 : Σ0 → Σ

′
0
, �1 : Σ1 → Σ

′
1

which commute with dom and cod. The free

category C(Σ) generated by a signature Σ, is defined as follows: the objects are given by Σ0 and an arrow

5 : B→ C is given by a list 5 = 51... 5= ∈ Σ
=
1

such that dom( 51) = B,cod( 5=) = C and cod( 58) = dom( 58+1) for

all 8 ≤ =. Identity arrows are given by the empty list and composition is given by list contatenation. The

universal property of C(Σ) may be stated as follows: functors � : C(Σ) → D from a free category are

uniquely defined by their image on the signature Σ, i.e. by a morphism of signatures � : Σ→* (D) for *

the forgetful functor. These abstract definitions are implemented in an object-oriented fashion with the

following Python classes, where the tuples denote the arguments to the corresponding class constructors.

class cat.Ob(name) is given by any Python object name . Equality of objects is given by the equality

of names, i.e. x == y if and only if x.name == y.name .

class cat.Arrow(dom, cod, boxes) is given by a pair of Ob -instances dom, cod and a sequence

of Box -instances boxes . Axioms are checked at initialisation, AxiomError is raised otherwise. An

Arrow -instance f has the following methods:

• f.dagger() returns the dagger of an arrow, it has syntactic sugar f[::-1] .

• f.then(g) returns the composition of two arrows, it is written f » g or g « f .

• Arrow.id(x) returns the identity arrow on a given object, it is shortened to Id(x) .

Axioms are implemented as part of the testing suite for the DisCoPy package: associativity f » (g » h)

== (f » g) » h and unitality f » Id(f.cod) == f == Id(f.dom) » f follow directly from the

monoid structure of Python sequences. Arrow -instances can be manipulated using the standard Python

syntax for sequences: they are iterable, indexable and sliceable, i.e. f[i] == f.boxes[i] and f[i:j]

returns the arrow f[i] » ... » f[j] . Printing an arrow yields a DisCoPy expression which generates

it, which proves useful for debugging and interactive programming.
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class cat.Box(name, dom, cod, data=None, _dagger=False) is a subclass of Arrow , i.e. a box

f is defined as an arrow with f.boxes == [f] . data is an optional argument, it can be used to attach

arbitrary Python data to a box. _dagger is an optional Boolean argument, set to False by default. It

is used to construct an involutive identity-on-objects contravariant endo-functor, i.e. a dagger.

class cat.Functor(ob, ar, ob_factory=Ob, ar_factory=Arrow) is given by a pair of mappings

ob, ar from Ob to ob_factory and from Box to ar_factory respectively. The domain of a

Functor -instance F is defined implicitly as the free category generated by the domain of ob and ar .

The two factory methods allow to build functors with arbitrary codomains, ar_factory is required to

provide methods id and then .

Example 1.1 In order to illustrate the syntax, we give a basic example of a free functor.

x, y, z = Ob(’x’), Ob(’y’), Ob(’z’)

f, g, h = Box(’f’, x, y), Box(’g’, y, z), Box(’h’, z, x)

F = cat.Functor(ob={x: y, y: z, z: x}, ar={f: g, g: h})

assert F(f >> g) == F(f) >> F(g) == g >> h

Example 1.2 PythonFunctor implements functors into Python functions, see appendix A.

F = PythonFunctor (

ob={x: 0, y: 1, z: 2}, ar={f: lambda: 42, g: lambda x: (x, x + 1)})

assert F(f >> g)() == (42, 43)

Example 1.3 The category of matrices is implemented by the Tensor class, see section 4.

F = TensorFunctor (ob={x: 1, y: 2, z: 2}, ar={f: [0, 1], g: [0, 1, 1, 0]})

assert F(f >> g) == F(f) >> F(g) == [1, 0]

All the objects, arrows, boxes and functors constructed with DisCoPy are representable in the following

sense: for any instance x , the string repr(x) is a valid Python expression which evaluates to x ,

assuming that the names defining x are representable themselves. Hence, DisCoPy data structures can

be serialized and exported in a standard format [66] for interoperability with other category theory tools.

Note that while the data structures and methods of DisCoPy are purely functional, boxes may hold mutable

a data attribute. It is used to build boxes that are not finitely generated such as the weights of neural

networks (appendix A) or the phases of quantum circuits (section 5).

2 monoidal.py

In this section, we describe the core data structure behind DisCoPy: the Diagram class, an implemen-

tation of the arrows of a free monoidal category. We begin with a definition of free monoidal categories

via free premonoidal categories.

Definition 2.1 A (strict) monoidal category is a category C equipped with an associative and unital

functor ⊗ : C×C → C for × the Cartesian product. A (strict) premonoidal category is a category C

equipped with an associative and unital functor ⊠ : C � C → C for � given by the following pushout in

Cat:

C0 ×D0 C×D0

C0 ×D C � D
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where C0,D0 are the discrete category of objects and the maps are given by the inclusions.

Example 2.2 The Keisli category for a strong monad over a monoidal category is a premonoidal category.

It is monoidal precisely when the monad is commutative. The state monad over the category of sets yields

a denotational semantics for side-effects [57].

Example 2.3 For a semiring S, the distribution monad - ↦→ S- over the category of finite sets yields a

premonoidal category with matrices over S as arrows and Kronecker product as tensor. It is monoidal

when S is commutative.

The pushout � is known as the funny tensor product, it may also be defined by the following universal

property. Let C⇒D be the category where objects are functors C→D and arrows are the transformations

with no naturality requirement. Then − � C is characterised as the left adjoint of C ⇒− in Cat. This

makes � a closed symmetric monoidal structure over Cat, the unique such structure apart from the usual

Cartesian product, see [27]. A functor from the funny tensor product C � D can be understood as a

functor which is “separately functorial” in its two arguments C and D, in analogy to separate continuity.

Premonoidal categories are also known as one-object sesquicategories (one-and-a-half categories), i.e.

2-categories without the interchange law, see [67]. Our motivation for working in a premonoidal setting

is two-fold: 1) free premonoidal categories have a simple presentation as free categories and 2) free

monoidal categories may then be described as quotient categories.

We define a monoidal signature Σ as a pair of sets Σ0,Σ1 with a pair of functions into the free monoid

dom,cod : Σ1 → Σ
★
0
. Generating arrows 5 ∈ Σ1 are depicted as boxes with input dom( 5 ) and output

cod( 5 ). Given a monoidal signature Σ, we define a simple signature ! (Σ) with objects Σ
★
0
, arrows

Σ
★
0
×Σ1 ×Σ

★
0

with dom(D, 5 , E) = DBE and cod(D, 5 , E) = DCE for B = dom( 5 ) and C = cod( 5 ). A layer

(D, 5 , E) ∈ Σ
★
0
×Σ1 ×Σ

★
0

is depicted as a box with wires to its left and right:

D B E

C

5

Proposition 2.4 Given a monoidal signature Σ, the free premonoidal category is the free category

PMC(Σ) = C(! (Σ)) generated by the simple signature of layers ! (Σ).

We define a diagram as an arrow of C(! (Σ)). Diagrams are uniquely defined by a domain, a list of

generators and an offset for each box: the number of wires passing to its left. Two diagrams are equal

in the free monoidal category if they are related by a series of interchangers, where D, E,F ∈ Σ
★
0

and

B
5
−→ C, B′

5 ′

−−→ C ′ ∈ Σ1:

D B E B′ F

C

C ′

5

5 ′
∼

D B E B′ F

C ′

C

5 ′

5

The right interchangers, going from the right- to the left-hand side of the previous equivalence are

terminating on boundary-connected diagrams. Given a boundary-connected diagram with = boxes, a

normal form can be reached in at most $ (=3) steps [25, Theorem 36]. This makes the word problem for

monoidal categories — i.e. given two arbitrary diagrams, are they equal up to interchanger? — decidable

in polynomial time, see [25, Theorem 48].
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Proposition 2.5 Given a monoidal signature Σ, the free monoidal category is the quotient MC(Σ) =

PMC(Σ)/I for I the interchanger relation, see [25, Theorem 16].

Example 2.6 Context-free grammars (CFGs) are a special case of free monoidal categories, where

non-terminal symbols are generating objects and production rules are generators with an atomic type as

domain. Syntax trees are diagrams, their normal form correspond to the leftmost derivation in a CFG.

Weighted CFGs can be defined as free monoidal categories equipped with a monoidal functor into a

monoid delooping, see [63].

Note that a monoidal category generated by one object, i.e. with Σ0 = {1 }, is called a PRO. An

example is the category of circuits described in section 5. This combinatorial definition yields an

implementation of the free monoidal category where the generating objects Σ0 are given by Ob -instances

and the generating arrows Σ1 are given by Box -instances.

class monoidal.Ty(x_1, ..., x_n) is a subclass of cat.Ob . A type x is given by a (possibly

empty) list of objects, It has a method x.tensor(y) , shortened to x @ y , which inherits the monoid

structure of lists with the empty type Ty() as unit.

class monoidal.PRO(n) is a subclass of Ty generated by Ob(1) . A PRO type is given a natural

number n with addition as tensor, i.e. PRO(n) == Ty(n * (1, )) .

class monoidal.Layer(left, box, right) is a subclass of cat.Box . A layer is given by a Box -

instance box and a pair of Ty -instances left and right . While essential to the internal structure of

DisCoPy, layers remain invisible to the end user of the package.

class monoidal.Diagram(dom, cod, boxes, offsets, layers=None) subclasses Arrow . A di-

agram f is given by a pair of types dom, cod , a pair of equal-length sequences boxes, offsets of

Box -instances and natural numbers respectively. layers is an optional argument, if omitted it will be

computed from dom , boxes and offsets . f has all the methods of Arrow plus the following:

• f.tensor(g) , shortened to f @ g , returns the diagram with

(f @ g).boxes == f.boxes + g.boxes and

(f @ g).offsets == f.offsets + [n + len(f.cod) for n in g.offsets] .

• f.interchange(i, j, left=False) returns a diagram with the boxes at indices i and j

interchanged or raises an InterchangerError if they are connected. This method gets called

recursively whenever i < j + 1 or j < i - 1 . If there is a choice in how to interchange, then

we apply the right interchanger by default.

• f.normalize(left=False) yields a reduction sequence applying right interchangers repeatedly.

Setting left=True will apply left interchangers instead.

• f.normal_form(left=False) returns the last output of f.normalize if f is boundary-

connected, otherwise it raises a NotImplementedError .

• f.draw(to_tikz=False, **params) draws a diagram using networkx [53], see the DisCoPy

documentation [23] for a complete list of parameters. Diagrams are displayed with matplotlib

[51] by default, setting to_tikz=True outputs a list of Tikz [68] commands instead. This is how

all the diagrams in this article were produced.

• f.to_gif(g, h, ..., **params) takes a list of diagrams and returns an animated GIF which

can be used to visualise a rewriting process in a jupyter notebook [42].
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As for Arrow , Diagram -instances can be manipulated as lists. Indexing a diagram f returns a

layer Id(left) @ box @ Id(right) such that f == f[0] » ... » f[-1] .

class monoidal.Box(name, dom, cod, data=None, _dagger=False) is a subclass of cat.Box

and Diagram . A box f is defined as a diagram with f.boxes, f.offsets == [f], [0] .

class monoidal.Functor(ob, ar, ob_factory=Ty, ar_factory=Diagram) is a subclass of cat.

Functor . A monoidal functor F is given by a pair of mappings ob, ar from Ty to ob_factory and

from Box to ar_factory respectively. Factory methods are optional arguments that allow arbitrary

codomains. ob_factory is required to provide a tensor method, ar_factory should provide id ,

then and tensor .

The implementation of the Diagram data structure and its normal form follows directly from their

formal definitions, they require no further explanation. The implementation of the draw method however

requires some non-trivial choices: given the combinatorial encoding of a diagram, which embedding on

the plane should we return? Moreover, the drawing algorithm may be treated as a proof of the equivalence

from the combinatorial to the geometric definition of diagrams introduced by Joyal and Street [35, 36].

The other direction, i.e. from a planar embedding (encoded as a grid of pixels) to its combinatorial

encoding as a DisCoPy Diagram , is part of an in-development application for automated string diagram

recognition. We leave the details to appendix B.

3 rigid.py

In this section, we describe the module rigid , an implementation of rigid monoidal categories. We

present snake removal, the algorithm for normalising rigid diagrams, and its application to the semantics

of pregroup grammars. Note that rigid categories are also called autonomous [35, 24], they are equivalent

to the compact 2-categories of Preller, Lambek [58] with one object.

A (strict) monoidal category C is rigid when every object G has left and right adjoints G; and GA and

four morphisms G ⊗ G;
n
−→ 1

[
−→ G; ⊗ G and GA ⊗ G

n ′

−→ 1
[′

−−→ G ⊗ GA depicted as cups and caps, subject to

(n ′⊗ 1G) ◦ (1G ⊗ [′) = 1G = (1G ⊗ n) ◦ ([ ⊗ 1G). Note that any monoidal functor between rigid categories

is isomorphic to a rigid functor, i.e. which sends cups to cups and caps to caps.

In a rigid category, left and right adjoints are unique up to a unique isomorphism. They cancel each

other — i.e. (G;)A = G = (GA ); — and they are anti-homomorphisms of the tensor product — i.e. 1; = 1A = 1,

(G ⊗ H); = H; ⊗ G; and (G ⊗ H)A = HA ⊗ GA . Thus, the adjoint of a product can always be written as a product

of adjoints. Given a set of atomic types Σ0, the objects of the free rigid category are given by lists of pairs

(G,=) ∈ Σ0 ×Z with the inclusion Σ0 ↩−→ Σ0 ×Z defined by G ↦→ (G,0) and the adjoints (G,=); = (G,=−1)

and (G,=)A = (G,= + 1). We define a rigid signature Σ as a pair of sets Σ0,Σ1 with a pair of functions

dom,cod :Σ1 → (Σ0×Z)
★, then the free rigid category is given by the quotient RC (Σ) =MC(Σ′)/R where

Σ
′ is the monoidal signature with Σ

′
0
= Σ0×Z and Σ

′
1
= Σ1 + {cupG : G ⊗ GA → 1,capG : 1 → G ⊗ G; }G∈Σ′

0
.

The cups and caps for the unit are the identity, those for G ⊗ H are given by nesting the cups and caps of G

and H. The relations R are given by the snake equation for every G ∈ Σ
′
0
:

G

GA G ∼

G

∼

G

G G;
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The rigid module implements classes Ty , Diagram , Box and Functor which subclass those

from monoidal . Pregroup types, i.e. the objects of free rigid categories, are implemented as Ty -

instances x with two attributes x.l and x.r for the adjoints. Box has two subclasses Cup and Cap

implementing the adjunction for simple types. The Diagram class has two static methods cups and

caps which implement the adjunction for product types. The normalize and normal_form methods

are overriden to implement snake removal: for each pair of cup and cap forming a snake, we first apply

interchangers to make them adjacent, then replace the snake with an identity, see [26, Definition 2.12].

Example 3.1 A rigid category is compact-closed if it is also symmetric monoidal. In that case, the

left and right adjoints coincide. The category of matrices over a commutative semiring with Kronecker

product as tensor is compact-closed, thus it is rigid.

Example 3.2 Lambek’s pregroup grammars [46, 47, 48] can be defined in terms of free rigid categories.

Indeed, a pregroup is a thin rigid category, i.e. with at most one arrow between any two objects. A

pregroup grammar � is given by a vocabulary + , a finite set of basic types � with B ∈ � the sentence

type and a finite dictionnary � ⊆ + × (�×Z)★ assigning pregroup types to words. Let Σ� be the rigid

signature with generating objects + + � and arrows F → C for each dictionnary entry (F, C) ∈ � and

G = RC(Σ�). The language of � is given by ! (�) = {D ∈ +★ | ∃ 5 : D→ B ∈ G }. That is, a list of words

D ∈ +★ is a grammatical sentence whenever there is a diagram 5 = 6 ◦ 3 with 3 : D → C a product of

dictionnary entries and 6 : C → B a pregroup derivation generated by cups and caps. We do not draw

the wires for words and depict the dictionnary entries as triangles. For example, let � = { B, = } and

� = {one, two, three → =, plus → =A ⊗ =⊗ =; , equals → =A ⊗ B ⊗ =; }, then “one plus two equals three”

is a grammatical sentence:

one plus two equals three

Example 3.3 For any monoidal category C, there is a free rigid category �(C) with a fully-faithful

monoidal functor C ↩−→ �(C), see [24]. Concretely, this means that in a rigid diagram with boxes coming

from a monoidal category, if the domain and codomain have no adjoint types then all snakes can be

removed. This allows to give a semantics to a pregroup grammar � as a rigid functor � : G → �(C).

For example, let one, two : 1 → = and plus : =×=→ = be functions, then we can compute the meaning of

“one plus two”:

=

=A =

= =;

=

=

one

plus

two

↦→

=

=

=

one

two

plus

↦→ 3

where the first step is snake removal and the second is function evaluation as in appendix A.
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4 tensor.py

Let MatS be the category with objects the natural numbers and arrows <→ = the matrices [=] × [<] → S

for a commutative semiring S, with Kronecker product as tensor. MatS is compact closed, i.e. both

symmetric monoidal and rigid. It is furthermore self-dual, i.e. objects are isomorphic to their adjoints.

For S = B, we get a category equivalent to finite sets and relations with Cartesian product. For S = C, it

is equivalent to finite-dimensional complex vector spaces and linear maps with the usual tensor product.

In practice, it is more convenient to consider an equivalent category TensorS where objects are lists of

natural numbers and adjoints are given by list reversal. Arrows (<1, . . . ,<:) → (=1, . . . , =:′) are tensors

of order : + : ′, i.e. matrices <1× · · ·×<: → =1 × · · ·×=:′ .

class Dim(n_0, ..., n_k) is a subclass of rigid.Ty generated by natural numbers.

class Tensor(dom, cod, array) is a subclass of rigid.Box given by Dim -instances dom and cod

and a numpy [69] array of the appropriate shape. then and tensor are both implemented using

numpy.tensordot , cups and caps return a reshaped identity.

class TensorFunctor(ob, ar) is a subclass of rigid.Functor where ob and ar are mappings

from Ty to Dim and from Box to Tensor respectively.

Remark 4.1 All the methods of the Tensor class are writen in jax.numpy, the subset of Python+numpy

that supports automatic differentiation with jax [31].

Example 4.2 Tensor networks can be defined as diagrams with a functor into tensors, contraction is given

by functor application. They have been applied to both condensed matter physics and machine learning,

see [54] for an introduction. Interfacing DisCoPy with tensor network tools such as [43, 33, 61] is left

for future work.

Example 4.3 Relational databases can be defined as Boolean tensors: a table with : columns is a state

1 → (=1, . . . , =: ) in TensorB. Conjunctive queries are diagrams, where query containment gives the

structure of a free Cartesian bicategory, see [10]. Query evaluation over a relational database is the

application a functor into Boolean tensors.

Example 4.4 The distributional compositional (DisCo) models of Coecke et al. [14, 15] can be defined as

functors � : G→ TensorS from the rigid category G generated by a pregroup grammar (see example 3.2)

into tensors, i.e. they map pregroup types C ∈ G to dimensions � (C) ∈ N★ and dictionnary entries F → C

to tensors of shape � (C). When � (B) = 1, the meaning for a grammatical sentence 6 : F1 . . . F= → B is a

scalar � (6) ∈ S which can be computed as the contraction of a tensor network. DisCo models into real

vector spaces, i.e. with S =R, received experimental support, see [32, 38, 37]. Relational DisCo models,

i.e. with S = B, have been applied to question answering, see [18, 22].

5 circuit.py

Quantum circuits are a standard model for quantum computation. They form the arrows of a PROP,

i.e. a symmetric monoidal category generated by one object, called a qubit. We define Circ as the free

PROP generated by =-qubit gates 6 : =→ =, scalars {B : 0 → 0}B∈C, post-selection {bra8 : 1 → 0}8∈{0,1}
and preparation {ket8 : 0 → 1}8∈{0,1} of ancilla qubits in the computational basis. Circuit evaluation is

defined as a monoidal functor eval : Circ → TensorC which sends each gate 6 : = → = to its unitary

matrix eval(6) : 2= → 2=.
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Given the circuit for an =-qubit state 2 : 0→ =, measurement results are a tensor measure(2) : 1 → 2=

of non-negative reals in TensorR+ , computed using the Born rule. Note that if a circuit contains scalars

or post selection, the measurement results need not be a normalised probability distribution.

The quotient Circ∼, where 2 = 2′ iff eval(2) = eval(2′), is a compact-closed category. Cups and

caps are given by the (unnormalised) Bell effect and state, the snake equation implies the correctness of the

teleportation protocol. See [20] for an introduction to diagrammatic reasoning and quantum processes.

class Circuit(dom, cod, boxes, offsets) is a subclass of rigid.Diagram with PRO -instances

as dom and cod . It has methods eval , implemented as a TensorFunctor , and measure which

computes the Born rule.

class Bra(b_0, ..., b_n) and Ket(b_0, ..., b_n) are subclasses of Circuit and rigid.Box

given by a bitstring b_0, ..., b_n .

class Gate(name, n_qubits, array) is a subclass of Circuit and rigid.Box with instances H ,

CX , SWAP , etc. Phases are implemented as subclasses Rx and Rz .

class CircuitFunctor(ob, ar) is a subclass of rigid.Functor where ob and ar are mappings

from Ty to PRO and from Box to Circuit respectively.

The methods to_tk and from_tk translate back and forth between DisCoPy’s Circuit class

and that of t|ket〉 [64], which can then be compiled and executed on quantum hardware or simplified

using pyzx [40]. Note that in the translation from DisCoPy diagrams to the directed acyclic graphs of

t|ket〉, we treat the SWAP gate as a logical gate, i.e. it simply renames the two qubits. In the other

direction, we introduce SWAP gates whenever a t|ket〉 gate is applied to non-adjacent qubits. Thus,

from_tk(c.to_tk()) is equal to the original circuit c up to the axioms of symmetric monoidal

categories.

Example 5.1 The quantum algorithms for natural language processing (NLP) of [71] can be defined

as rigid functors G → Circ from a pregroup grammar (see examples 3.2 and 4.4) to the category of

circuits. See [17] for a discussion of distributional compositional models for NLP on quantum hardware.

A proof-of-concept was implemented using DisCoPy, see the notebook of the first experiments here and

there [52] for more details.
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A (strict) monoidal category C is symmetric when it comes equipped with a natural transformation
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(hexagon). A component fG,H is depicted as a swap of the wires for G and H. The free symmetric

monoidal category SMC(Σ) generated by a monoidal signature Σ can be defined as a quotient MC(Σ′)/S

of the free monoidal category generated by the disjoint union Σ
′
= Σ+ {fG,H }G,H∈Σ0

. The relation S is

generated by the rules for involution and naturality:

G H

H G

G H

∼

G H

and

B I

C

I C

5

∼

B I

I B

C

5

for all G, H, I ∈ Σ0 and 5 : B → C in Σ
′. Note that B, C ∈ Σ

★
0

may be of arbitrary length, in which case fB,I

and fC ,I are defined as ladders of swaps, i.e. the symmetry for compound types fG⊗H,I and fG,H⊗I is

defined inductively by:

G H I

I H

I G

and

G H I

H G

I G

The symmetry for the empty type is defined to be the identity fG,1 = f1,G = 1G . An SMC where the

tensor is the Cartesian product and the unit is terminal (i.e. a category with finite products) is called

a Cartesian category. Equivalently, an SMC is Cartesian when objects carry a natural commutative

comonoid structure [62, 6.1]. Given a monoidal signature Σ, the free Cartesian category CC(Σ) is

the quotient MC(Σ′′)/(S +P) for Σ′′
= Σ

′+ { `G : G → G ⊗ G }G∈Σ0
+ { nG : G → 1 }G∈Σ0

. The components

`G and nG are depicted as wire splitting and ending respectively. The comonoids of non-atomic types

inductively. That for the unit is the identity and the comonoid of G ⊗ H is given by:

G H

G G

H H

H G

and

G H

The relation (S +P) is given by the axioms for commutative comonoids plus naturality of symmetry,

coproduct and counit for each generating arrow. A PROP (PROduct and Permutation) [44] is an SMC

generated by one object, a Lawvere theory [50] is a Cartesian category generated one object.

Lawvere theories are implemented by the class cartesian.Diagram , a subclass of

monoidal.Diagram with static methods swap , copy and delete implementing the structural mor-

phisms. cartesian.Box is a subclass of monoidal.Box where each instance holds a Python function

with natural numbers as domain and codomain. A Cartesian box f with f.dom, f.cod == (m, n)

sends <-tuples to =-tuples, it can be defined in the standard syntax for Python functions using the

decorator @disco(m, n) . Swap , Copy and Del are subclasses of cartesian.Box which im-

plement the symmetry and comonoid on the generating object. cartesian.Functor is a sub-

class of monoidal.Functor which preserves symmetry and product. Function is a subclass of
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cartesian.Box where then and tensor are overriden by function composition and tuple concate-

nation. The PythonFunctor class implements Cartesian functors into Function , i.e. it maps the

formal composition of diagrams to the concrete composition of functions. Note that when f and g have

side-effects, the tensor f @ g is in general different from Id(f.dom) @ g » f @ Id(g.cod) . Thus,

Function is closer to the implementation of a premonoidal than a monoidal category, see example 2.2.

Example A.1 The Lawvere theory F with no generating arrows is the opposite of the category of finite sets

with disjoint union as monoidal structure: diagrams 5 : < → = in F correspond precisely to the graphs

of the functions 5 : [=] → [<]. The subcategories of diagrams in F with no coproduct, no counit and no

symmetry correspond to injective, surjective and monotone functions respectively. The subcategory of F

generated by symmetry alone, i.e. the free SMC generated by one object, corresponds to bĳections. The

normal form for diagrams in F is given by decomposing any function into a surjection and a monotone

injection, see [45, Theorem 3].

Example A.2 For a semiring S, the category of matrices over S with direct sum as monoidal product

can be defined as a Lawvere theory generated by a commutative monoid + : 2 → 1 with unit 4 : 0 → 1 and

scalars { B : 1 → 1 }B∈S. The relations are given by the axioms for semirings, see [70]. The naturality

relation for the comonoid with respect to + and 4 are called the bialgebra laws, they have applications in

control and network theory [5, 4].

Example A.3 Let NN be the Lawvere theory generated by sum + : 2 → 1, activation 0 : 1 → 1, finite

sets of weights {F8 : 1 → 1 }8∈, and biases {18 : 0 → 1 }8∈� . The arrows of NN are the diagrams of

neural network architectures. Given a set of parameters \ : , + � → R, an implementation is given

by the model �\ : NN → Set such that �\ (1) = R, �\ (18) = { () ↦→ \ (18) }, �\ (F8) = {G ↦→ \ (F8) · G },

�\ (+) = { (G, H) ↦→ G + H } and�\ (0) :R→R is a non-linearity such as sigmoid. A loss ; : (R<→R=) →R

for an architecture 5 : < → = in NN takes an implementation and returns a real number encoding its

success at some data-driven task. The gradient of \ ↦→ ; (�\ ( 5 )) can be computed by back-propagation

over the architecture 5 , using automatic differentiation tools such as jax [31]. The back-propagation

algorithm is itself part of a functor NN → Learn, where Learn is a Cartesian category of supervised

learning algorithms, see [29, 28].

B drawing.py

We reformulate some of the definitions and results from Joyal, Street [35].

Definition B.1 A topological graph, also called 1d cell complex, is a tuple (Γ,Γ0,Γ1) of a Hausdorff

space Γ and a closed, discrete subset Γ0 ⊆ Γ of nodes such that Γ−Γ0 =
⊔
Γ1 is the sum of its connected

components Γ1, called edges, each homeomorphic to an open intervals with boundary in Γ0.

Definition B.2 A planar graph between two real numbers 0 < 1 is a finite topological graph Γ embedded

in R× [0, 1] such that every G ∈ Γ∩ (R×{0, 1 }) is a node in Γ0 and belongs to the closure of exactly one

edge in Γ1.

The points in Γ0 ∩ (R× {0, 1 }) are called outer nodes, they are the boundary of the domain and

codomain dom(Γ),cod(Γ) ∈ Γ
★
1

of the planar graph Γ. The points 5 ∈ Γ0 − (R× {0, 1 }) are called inner

nodes, they have a domain and codomain dom( 5 ),cod( 5 ) ∈ Γ★
1

given by the edges that have 5 as boundary.

The composition Γ◦Γ′ and tensor Γ⊗Γ
′ are defined by rescaling and pasting the two planar graphs Γ,Γ′

vertically and horizontally respectively, see [35, §4].
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A planar graph Γ is progressive, or recumbent, when the second projection 4→ [0, 1] is injective for

every edge 4 ∈ Γ1. Progressive planar graphs have no cups or caps. A progressive planar graph is generic

when the projection Γ0 − (R× {0, 1 }) → (0, 1) is injective, i.e. there are no two inner nodes at the same

height. A deformation of planar graphs is a continuous map ℎ : Γ× [0,1] → [0, 1] ×R such that 1) for

all C ∈ [0,1], ℎ(−, C) is an embedding whose image is a planar graph, and 2) for all G ∈ Γ0, if ℎ(G, C) is

inner for some C then it is inner for all values of C ∈ [0,1]. A deformation of planar graphs is progressive

(generic) when for all C ∈ [0,1], ℎ(−, C) is progressive (generic).

The induced equivalence relation — with Γ0 ∼ Γ1 if and only if there is a deformation ℎ with

ℎ(−,0) = Γ0 and ℎ(−,1) = Γ1 — is a congruence with respect to composition and tensor of planar graphs,

i.e. if Γ0 ∼ Γ1 and Ω0 ∼ Ω1 then Γ0 ⊗Ω0 ∼ Γ1 ⊗Ω1 and Γ0 ◦Ω0 ∼ Γ1 ◦Ω1. Furthermore, tensor and

composition are associative and they respect the interchange law up to progessive deformation. Thus,

progessive planar graphs up to progessive deformation form a strict monoidal category [35, Proposition 4].

Given a monoidal signature Σ, a valuation E of a planar graph Γ is a pair of functions E0 : Γ1 → Σ0

and E1 : Γ0 − (R× {0, 1 }) → Σ1 that send edges to objects and inner nodes to arrows, which commute

with domain and codomain. Progressive planar graphs valued in Σ (up to progressive deformation) are

the free monoidal category [35, Theorem 5]. We conjecture that generic planar graphs up to generic

deformation are the free premonoidal category.

From the universal property, we know that the category of progressive planar graph is equivalent to

the combinatorial definition of free monoidal categories given in section 2. Concretely, this equivalence

is witnessed by the following pair of algorithms translating between planar graphs and diagrams.

Input : A progressive planar graph Γ

Output

:

Diagram(dom, cod, boxes, offsets)

1 Compute the connected components Γ1 and their boundaries Γ0.

2 Order the nodes by height and partition them into Γ0 = dom + boxes + cod .

3 Find the start and end points Γ1 → ( dom + boxes ) × ( boxes + cod ) for each edge, the

preimage of this map gives the domain and codomain for each box.

4 Compute offsets as the number of edges to the left of each box.

Algorithm 1: read

Input : Diagram(dom, cod, boxes, offsets)

Output

:

A progressive planar graph Γ

1 Set Γ0 := { (8,0) | 8 < len(dom) } and Γ1 := ∅.

2 for height, (box, offset) in enumerate(zip(boxes, offsets)) do

3 Deform Γ so that there is at least len(box.cod) + 1 horizontal space between the edges

of cod(Γ) at index offset and offset + len(box.dom) .

4 Set Γ0 := Γ0 + { box } for box = (<, height + 1
2
) with < computed at step 3 and

Γ1 := Γ1 + {G → box | G ∈ box.dom } + { box → G | G ∈ box.cod }.

5 Return Γ := Γ+ {(8, 9) → (8, max(len(boxes), 1) ) | (8, 9) ∈ cod(Γ)}.

Algorithm 2: draw
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